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ABSTRACT   

The ATLAST 9.2m architecture has evolved to be more cost effective while also meeting a more thorough 
understanding of the driving science requirements.  The new approach can fit in an existing Delta IV Heavy rocket and 
makes extensive use of heritage and selective use of technology in order to minimize development time and cost.  We 

have performed a more thorough look at how to meet the stability requirements for both thermal and dynamics and have 
an approach consistent with an initial error budget.  In addition, we have developed concepts to support robotic or human 
servicing in a cost effective manner through a modular approach that relies on simple, external access and metrology.  

These refinements to the architecture enable a cost-effective, long-lifecycle, and relatively low risk approach to 
development. 
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1. INTRO DUCTIO N 

Several mission concepts for the Advanced Telescope Large Aperture Space Telescope (ATLAST)
i
 were proposed in 

2009 as potential follow-on missions to the James Webb Space Telescope. All of these architectures assumed a 

minimum of an 8-m aperture and their architectures were largely driven by the ability to perform high contrast 
coronagraphy.  At the time, all of the approaches proposed assumed a rocket with a larger fairing and mass would be 
developed and would be available in time for a new start soon after the 2020 decadal.  Since those proposals, the Ares V 

was cancelled and while larger rockets have been proposed, no new large rocket with a large fairing will have been built 
by the end of the decade.  With this in mind, our team has set out to continue to refine the ATLAST architecture while 
also developing it to fit in an existing fairing.  This architecture is really a reference design that can be scaled up to take 

advantage of larger rockets in the future. Larger rockets provide opportunities for even larger apertures and more mass 
margin.  We have focused on making the architecture as cost-effective as possible and making it serviceable which 

provides program flexibility, reduces risk of failure and extends the life of the mission. 

 
With this goal in mine, our team has focused on assessing whether the ATLAST 9.2m architecture can fit in a Delta IV 

Heavy which as seen in Figure 1 is the most capable existing rocket from a mass perspective.  This 10-meter class 
telescope uses a light-weighted segmented mirror geometry that takes advantages of economies of scale in its 
manufacturing and heavily leverages integration and testing methods from JWST.  For simplicity in this reference 

design, we use the exact segment size used on JWST but with an extra ring of mirrors and thus 36 segments, exactly 
double the number on JWST.  The Delta IV Heavy is capable of launching 9800Kg to L2 so that sets the mass of the 
total observatory including margins.  The Delta IV Heavy defines the key characteristics of mass and fairing volume for 

the design.  However, the key performance driver that needs to be considered is s tability in order to achieve 10^
10

 system 
contrast.  For stability, this can be achieved either using an internal coronagraph or an external coronagraph.  In the case 

of the external coronagraph, or starshade, the stability requirements on the telescope are greatly relaxed such that the 
stability needed for a general class Ultra-Violet Optical Infrared  (UVOIR) telescope will suffice.  However, a starshade 
for a 10-m class telescope is both a technological challenge due to size and has the issue of retargeting time which can be 

on order several weeks – not fast enough to survey a large number of potential earth-like planets in a 5-10 year mission 
life.  To be conservative, our team has assessed the telescope assuming an internal coronagraph which does not suffer 
from the retargeting limitation but places much tighter requirements on the stability of the telescope.  We have also 



 
 

 

 

assumed the tightest possible requirements on the telescope, but upcoming developments in coronagraph design may 
result in the relaxation of certain telescope requirements.    

 

 
Figure 1:  Mass to L2 of Various Rockets 

 
 

Another key consideration beyond mass, volume and stability is serviceability.  Assuring serviceability allows extending 
and expanding the science capabilities along with providing the potential for significant risk mitigation. With these 
considerations, our team has developed a 10-m class segmented telescope architecture which can feasibly achieve these 

objectives in a Delta IV Heavy.  To do this, we have performed some simple scaling calculations, mass budgets, and 
initial layouts which will require further detailed study.  We have also developed a new packaging approach which 
retains heritage from JWST to reduce risk and cost.  In the end, we don’t see any showstoppers to being able to achieve a 

10-m class telescope in a Delta IV Heavy and are sufficiently optimistic to already be working on more detailed 
assessments. 

 
 

2. REQ UIREMENTS  

 
The set of science requirements for the ATLAST telescope has been studied by Postman

ii
  and the key requirements have 

been laid out.  The telescope is both a general class Ultra-Violet Optical Infrared (UVOIR) observatory capable of 
powerful science that includes high throughput far-ultraviolet science and wide field visible imaging with the potential 
for multi-object spectroscopy.  These general class capabilities can be thought of as extending the Hubble and JWST 

great observatory general class capabilities and will serve a large user community.  In addition to these capabilities, there  
is one additional science area which is the study of exoplanets including detecting a large number of earth -like planets 

and obtaining their bio-signatures.  While the requirements for detecting earth-like planets are challenging, the discovery 
potential includes finding bio-signatures around earthlike habitable planets  and is perhaps the most significant objective 
of the mission.  The combined set of requirements for the observatory are shown in Figure 2 and are appropriate for 

accomplishing all of these goals in a single observatory.  As Stark
iii
 has shown, many hundreds of target stars will need 

to be surveyed just to find 10’s of exoearths.  In addition, targets will likely need to be viewed more than once to 
separate out the background galaxies or to do orbit determination.  This means the observatory will have to efficiently 

survey many stars with short settling times.   The need for short settling times is a key guiding principle in the stability 
architecture.   

 
 
 

 
 



 
 

 

 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
Figure 2: Top Level Requirements Summary  

 
 
In addition to understanding the science driven observatory requirements, there are some derived requirements like  

lifetime, field of regard, and percentage of time spent on Exoplanet science.  Without specifying these requirements, we 
do know that our goal is the maximum field of regard (minimum for Exoplanet work is +/-45 degrees of pitch), the 
longest possible life (perhaps 10 years or more) and the maximum feasible time spent doing Exoplanet science instead of 

waiting for settling or slewing. 
 

 
 

3. OPTICAL ARCHITEC TURE 

 
The basic optical architecture for the ATLAST observatory remains a Three Mirror Anastigmat (TMA) design shown in 

Figure 3.  However, as seen in Figure 3, the coronagraph and UV instruments will only use the first two mirror 
Cassegrain (coated with a UV quality coating like AlMgF) and the follow-on reflections for the TMA and fine steering 

mirror will inject light into the wide field TMA instruments.  The Tertiary and follow-on TMA optics can be coated with 
Silver which is high throughput in the visible.  The coronagraph includes a back end spectrometer and the guiders in 
these configurations are internally redundant.  The dual guider allows for roll control.  In addition, the star trackers will 

be mounted to the telescope structure to minimize drift between them and the telescope. 
 

 
 

Figure 3: Three Mirror Anastigmat Design 
 

 

 

 
 

Telescope Parameter Consensus Requirement 

Primary Mirror Aperture ≥ 8 meters 

Primary Mirror Temperature ~20 C, pending detailed thermal design 

UV Coverage 100 nm (90 nm goal) – 300 nm 

Vis/NIR Coverage 300 nm – 2500 nm 

Mid-IR Coverage Under evaluation to ~ 8000 nm 

Vis/NIR Image Quality Diffraction-limited performance at 500 nm 

Stray Light Zodi-limited in 400 nm – 2000 nm wavelengths 

Wavefront Error Stability for 
Exoplanet Imaging Using an 

Internal Coronagraph 

1 x 10
-10 

system contrast 
< 10 pm rms residual system WFE for < 10 min 

bandpass between λ/D – 10λ/D 

 



 
 

 

 

 
 

 
 

Figure 4:  Science Instrument Optical Layout 
 
The performance of the TMA is sufficient to provide low enough wavefront error to be diffraction limited in the visible 

and was documented in 2009 ATLAST studies.  Also studied in 2009 was the straylight architecture.  What is shown in a 
central deployed baffle that was not part of JWST but which will provide protection against “Rogue Path” light that can 
come around the secondary mirror.  In addition, the planar sunshield has been shown to provide sufficient straylight 

suppression such that the limiting source of straylight in visible wavelengths is the in-field Zodiacal and starlight which 
a circular baffle would not block.  Like JWST, the assumption is that micrometeoroids are small and of relatively low 

rate such that they represent low risk to system performance. 
 
 

4. LAUNCH CO NFIGURATIO N 

 

Perhaps the most significant change since the 2009 studies is a new way to configure the telescope for launch which 
allows the telescope to fit in an existing shroud (earlier studies assumed larger fairings).  The key to this new architecture 

is that it continues to make use of the JWST wing deployment method which utilizes  latches and hinges for the JWST 
wings.  In this new architecture, the two wing approach has been replaced with a mutli-wing design which configures the 
telescope in a circular fashion which best optimizes the circular launch vehicle but continues to use the JWST 

deployment methods.  In this new architecture, wings are attached to wings using the same basic latch and hinge 
approach and the wings themselves can be snubbed against a central core backplane which has a modified geometry to 
accommodate this while still allowing the instruments to be serviceable externally.  This architecture is shown in Figure 

5 and the left side and center of the figure denotes the 9.2 meter reference design architecture which uses a secondary 
mirror deployment similar to that used on JWST.  The right side of the figure shows a conceptual 11.2m architecture 

which uses a different secondary mirror deployment method but demonstrates that some additional scaling may be 
possible with this basic approach.  In these architectures, the sunshield is stowed below the telescope and is based on a 4 
boom approach in a volume efficient manner.  

 



 
 

 

 

 
 

Figure 5:  Launch Configuration: 9.2m Side, 9.2m Top, 11.2m Side 
 
 

The other critical question for fitting in the fairing is the mass of the observatory.   Since the Delta IV Heavy can launch 
9800 Kgs to L2, this gives 3200Kg’s more mass than the JWST mass of 6600Kg’s.  Based on an initial assessment, a 9.2 

meter telescope presents feasible mass compatibility with the Delta IV Heavy launch vehicle. Compared to the 
segmented mirror system already validated on JWST, a more efficient architecture enabled by the fact that the mirrors 
are room temperature should allow a significant reduction in mirror areal density.  Additional study is planned with 

sufficient detail to assess whether larger apertures are possible. A related and important mass trade is segment size.  
Smaller segments help both thermal and dynamic stability and are lower areal density.  Given that the system is room 
temperature, once the mirrors are small enough (perhaps 1-meter scale), then only 3 actuators per mirror may be needed.  

The biggest drawback of this type of architecture is the increase in the number of mirror edges but this is a parameter 
that can be improved with polishing techniques . For now, we use JWST segment sizes which are easy to study based on 

JWST analogs.  

 



 
 

 

 

 

5. DEPLO YED CO NFIGURATIO N 

 

The deployed configuration of the ATLAST 9.2 meter reference design is shown below in Figure 6.  The architecture is 
optimized for both mass and for stability.  A key part of the architecture is the primary mirror where there are several 

mirror technologies under study including Silicon Carbide, ULE and Zerodur.  For the case shown, we stick with the 
JWST 6-degree of freedom mount design and higher authority is really a trade depending on the mirror material and how 
one wants to handle gravity distortion (via polishing or on-orbit control).  The mirror assemblies are heated from the 

back radiatively to very tight control.  The secondary mirror is also on a 6-dof mount but has high speed tip/tilt/piston 
controllability if needed combined with a laser truss.  The sunshield is only a 3-layer sunshield (the number of layers 
chosen to protect it from micrometeoroids).  The backplane is inside a heated cavity which maintains the backplane in a 

very stable warm cocoon.  Between the telescope and the spacecraft is a gimbal that allows pointing the telescope over a 
large field of regard while keeping a constant center of gravity so that the frequency of momentum offloading is 

minimized.  This approach keeps the sunshield normal to the sun at all times to provide a very stable interface.  In 
addition, the primary mirror is only allowed to face deep space which minimizes the delta Q that strikes the front surface 
of the primary mirror allowing for a very stable thermal design.  The secondary mirror deployment system is very 

similar to JWST.  Between the gimbal and the telescope is  a non-contact isolation system that allows the telescope to 
essentially float with sensing and control between the spacecraft and the telescope.  The main sources of disturbance are 
the reaction wheels so these will be sufficiently isolated.  The last aspect of the architecture is that it will be serviceable 

which includes externally accessed instruments and spacecraft elements and will include docking features.   

 

 
 

Figure 6:  ATLAST 9.2m Reference Design Deployed Configuration 
 

 



 
 

 

 

6. STABILITY ARCHTITEC TURE 

 

One of the key challenges for the ATLAST architecture is stability.  To first order, the requirements for ATLAST can be 

compared to the original Terrestrial Planet Finder dynamics requirements
iv
 with the big distinction being that newer 

sensing and control algorithms have reduced the amount of time needed for stability to approximately 10 minutes.  The 

simple conservative requirement on wavefront stability of the 10 minutes is 10 picometers of residual wavefront error 
after any sensing and control has been performed.  The 10 picometers comes from comparing the speckles produced by 
the instability to the exoplanet itself.  The 10 picometers would break down to smaller (approximate 5 picometer 

contributions).  TPF budgeted these contributors in terms of contrast and showed thermal and dynamic stability of the 
primary and secondary mirror are the dominant terms.  Since the ATLAST concepts are segmented, we have changed 
the stability landscape slightly in that we can separate segment level stability from primary mirror system stability.  We 

have adopted the assumption that the primary mirror is the primary stability challenge both because of the picometer 
level requirements unique to it and the fact that TPF had addressed secondary mirror beamwalk requirements using a 

non-contact isolation system as being done here.  Thus, we have focused primarily on the question of segment level 
stability both dynamically and thermally to demonstrate feasibility.  To do this, we provide scaling of the JWST 
segmented system dynamics.  JWST has very detailed and mature models so scaling off of JWST provides the best 

opportunity to check the feasibility of the dynamics solution. 
 
Since ATLAST will not require a cryocooler, the key relevant JWST estimate is for reaction wheel-induced jitter. The 

current (April 2014) estimated Wavefront Error (WFE) jitter performance for JWST is given in Figure 7 below. 
 

 
Figure 7 – JWST Reaction Wheel-induced Wavefront Error Estimated Performance 

 
Jitter response is evaluated for each of the six reaction wheels as a function of wheel speed. The curve shown above is 
the maximum (envelope) of the six responses at any given speed. The responses include a model uncertainty factor 

(MUF) of 1.9 below 20 Hz and 3.7 above 40 Hz, with a linear ramp from 20-40 Hz. The horizontal line from 0-70 
rev/sec is the 13 nm allocation plotted over the operational wheel speed range, extended by 10% to allow for frequency 

uncertainty in the structural model. Note that for JWST the 13 nm is not a hard requirement, but rather a goal, as jitter is 
just one error term among many that affect JWST’s Strehl and Encircled Energy Stability requirements. As these 
requirements are met with margin the exceedances shown above are not a concern. 



 
 

 

 

 
For purposes of deriving the ATLAST isolation system requirement, the sharp peaks at 21 Hz, 30.5 Hz and 34 Hz are 

ignored. These are driven by discrete structural modes that do not involve tip/tilt of the primary mirror (PM) segments. 
For ATLAST it is assumed that any similar modes will be handled through use of tuned mass dampers, reaction wheel 
speed-control algorithms, or other means. The cluster of peaks between 40-50 Hz corresponds to a band of modes 

associated with PM tip/tilt. These modes are less amenable to attenuation than the discrete modes below 40 Hz and 
hence an improvement in JWST’s broadband isolation system would be required to achieve ATLAST performance 

levels.   
 
So per Figure 1 the starting point for the calculations to derive ATLAST isolation requirements is ~20 nm RMS for 

frequencies > 40 Hz. The first step is to make an adjustment for structural damping. JWST uses 0.02% of critical 
damping for the cold (~40K) telescope. Conservatively, a minimum of 0.2% damping could be assumed for a room-
temperature (RT) structure. Hence, we could assume that jitter for a warm JWST-like structure would be ~2 nm RMS. 

 
The next step is to estimate the attenuation provided by JWST’s vibration isolation system. JWST uses a two -stage 

isolation system, with stage 1 being the 1-Hz Isolator Assembly at the spacecraft-payload interface and stage 2 being the 
8-Hz Reaction Wheel Isolator Assemblies (one hexapod per wheel) at the wheel-spacecraft interfaces. 
  

Figure 2 shows the theoretical performance of the JWST two-stage passive isolation system, from reaction wheels to 
optics. The frequency response plotted above was developed by modeling each stage as single-degree-of-freedom 
spring-mass-damper systems and then concatenating the two models in series. At 40 Hz the attenuation is -92 dB as 

shown by the figure inset. As an aside, single-stage transmissibility tests on JWST engineering hardware models match 
the single-DOF analytical models quite well. A transmissibility test for the two-stage design is a future activity. 
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Figure 8 – Theoretical Performance of the JWST two-stage Vibration Isolation System 
 
The final steps are to calculate the additional attenuation required to reduce room temperature JWST-like performance 

from ~2nm to the ATLAST performance requirements (see reference below), and from that derive the ATLAST 
isolation requirements. The results of these calculations are summarized below in Table 1. 
 

 
 

 



 
 

 

 

ATLAST PM Jitter 
Requirement 

Additional attenuation 
required starting from 2 nm 
PM Jitter, -92 dB 

ATLAST Isolation System 
Requirement (> 40HZ) 

100 picometers 

(minimum) 

-26 dB (0.005) -118 dB 

10 picometers (goal) -46 dB (0.0005) -138 dB 

 
Table 1 – ATLAST Vibration Isolation System Requirements 

 

These additional attenuation levels were compared against the Disturbance Free Payload (DFP) non-contact isolation 
systems proposed originally to JWST and proposed for TPF.  A simple scaling of the peak reduction at the 40-50hz 

range where the main primary mirror segment contributors are found gives approximately a 40dB (100x) reduction 
which is very close to the minimum specified.  This is further substantiated by a plot given on the Lockheed website for 
the DFP technology

v
 which cites a 100x LOS improvement over a conventional passive system.  This of course is based 

on continuous reaction wheel disturbance and does not factor in other factors like slewing but is believed to be the 
hardest challenge.  It does however include the JWST model uncertainty factors which perhaps could be reduced through 
a test validation program.  It is also based on a JWST design that was optimized for mass and where significant dynamic 

improvement is known to be possible through simple design improvements of the backplane and structure.  With that 
said, this is obviously a very simple and first order analysis  and more detailed modeling and architecture studies are 

needed. 
 
In addition to dynamic stability, we have also begun to study primary mirror segment thermal stability.  Segment alone 

stability is the biggest concern because it cannot be easily corrected and shows up in mid to high spatial frequencies 
which contribute in the spatial frequencies of interest.  Based on experience, our assessment is that front to back gradient 
changes will be the dominant segment level thermal stability contributor to wavefront stability.  Front to back gradients 

cause segment power changes.  A simple calculation for an ATLAST size ULE segment static front to back gradient 
yields a wavefront of 46 picometers for a 1mK front to back gradient so we will need to limit the change for this case to 

10% of the gradient.  Since the primary mirror will always face deep space, we expect the changes to the front surface of 
the coated optic to greatly limit the delta Q and thus the gradient change induced from the front.  However, we will also 
need to control the mirror from the back and this is limited to our controllability based on sensor resolution.  The .1 mK 

is pushing the state of the art on commercial thermal sensor resolution.  We can reduce this effect by either reducing the 
CTE, thickness or diameter of the segments.  Note the front to back gradient wavefront change goes with the square of 
the diameter so smaller segments will greatly help this.   Other mirror materials like Silicon Carbide will also have their 

own parameters and requirements
vi
.  We believe these simple calculations suggest that this requirement is within reach 

and this is certainly a key area of more thorough analysis.  One possible outcome of this will be the need to improve 

temperature sensor resolution and mirror thermal control. 
 
A related topic is the stability of the full primary mirror (all 36 segments) which is dictated by the backplane.  The 

strategy for this is to build heater plates around the backplane to control the boundary conditions to milli-Kelvin levels.  
If the boundary conditions are kept stable, the backplane will not deform.  The backplane has higher thermal mass which 
will also limit these effects and it is likely local effects at mount interfaces will prove to be the challenge.  Early TPF 

budgeting showed lower order aberrations are not as critical and we believe that mid and higher spatial frequency 
changes can be managed through edge metrology if required.  For example, 1 picometer level laser metrology has been 

demonstrated to work in seconds and there are many methods for doing this.  Another option here is to use the out of 
band wavefront sensing of the science target.  It may also be possible to reduce the 10 minute bandpass of the overall 
control system which would relax the requirements.  In the end, a solution that relies only on thermal control methods is 

the goal to minimize mass and cost but metrology methods can be employed if needed. 
 

7. COST CO NSIDERATIO NS 

An important consideration for the design is to be cost effective.  Based on our experience from JWST, the main driver 

in the cost of a large observatory is the size and the duration of the marching army.  One clear time driver on JWST was 
the cryogenic requirement.  For JWST, this required significantly more time in both the design and in the integration and 
testing phase.  A particularly time consuming aspect of JWST was the combination of being lightweight and cryogenic 



 
 

 

 

because it meant every bond type and flexure required detailed cryogenic structural analysis that was very time 
consuming and required associated material and coupon and element testing, none of which would be required for 

ATLAST.  In addition, the long duration cooldown and warm-ups of mirror, telescope and instrument tests would also 
be avoided with a room temperature telescope.  While high performance (lower diffraction limit) systems requires some 
additional time for final polishing, our assessment is that most of the effort is in getting the metrology right during the 

technology phase and this is not a significant increase to the production phase.  In addition, the isolation system needed 
for ATLAST could be built in parallel so dynamics in general are not a critical path impact .   

 
Other methods to decrease the critical path exist.  It is well known that one can decrease the critical path by early 
investments in technology to reduce the risk.  One can also facilitize the mirror fabrication with more parallel lines than 

done for JWST so that mirrors can be made in less time.  For JWST, segments were Beryllium which had superior 
cryogenic properties but were known to take a long time to grind and polish.  The ATLAST mirror options include much 
faster grinding and polishing times and more improvements in these areas are possible.  With early investment in 

technology and engineering design units, mirrors with sufficient facilitization could be made in nearly half the amount of 
time (5 years for 36 segments vs. 10 years for 18 segments  on JWST) which would have a significant effect on the total 

duration and thus cost of the mission. 

 
8. SERVIC EABILIY ARCHITEC TURE 

As space observatories become larger and more complex, the need for Program flexibility, cost -control options, and 

extended mission operations become increasingly important.  Spacecraft modularity and on-orbit servicing technologies 

and capabilities – which are defined and examined in more depth below – can help program managers overcome these 

challenges throughout both the prelaunch and on-orbit phases of the program. Historical missions such as Solar Max, the 

Hubble Space Telescope (HST), and the ongoing maintenance of the International Space Station have demonstrated the 

value of modularity and servicing.  Observatory programs today are also adding servicing to their core requirements, 

which will continue this advancement.  The ATLAST observatory will be in a position to significantly benefit from these 

technologies as it enters its design phase.  

 

Servicing capabilities deliver the ability to autonomously rendezvous and dock with a spacecraft to either repair, or 

extend its life through component replacement, supporting system upgrades and refueling. The technologies that support 

satellite servicing – dexterous robotics, high-speed computing, and advanced tools – unlock a suite of extended options 

for mission operators.  Closely related to servicing capabilities are built-in spacecraft modularity and cooperative 

servicing interfaces.  When these elements and objectives are combined, servicing allows for more than just extended 

mission operations. 

 

 
 

Figure 9:  Instrument Serviceability from Externally Accessible Robot Arm 

 

Mission designers gain new programmatic flexibility during ground processing when a spacecraft is designed for quick 

and easy instrument replacement on orbit.  Modularity allows mission developers to smoothly remove an instrument on 



 
 

 

 

the ground during or even after observatory level environmental testing to install new components. As robots become 

autonomous and are integrated with 3D spatial information, the potential for autonomous servicing increases.  ATLAST 

has been designed in an externally accessible modular way such that autonomous instrument change-out may prove 

feasible.  An example of this interface for science instrument change-out can be seen in Figure 9.   The instrument 

change-out which was performed by astronauts on HST could be performed with a semi-autonomous robot.  

   

The servicing technologies applicable to ATLAST are continuing to be advanced through ground test and flight 

programs.   Demonstrations on the International Space Station such as the Robotic Refueling Mission are demonstrating 

robotic manipulation of non-cooperative electrical connectors and hazardous refueling capabilities.  Planned future 

demonstrations will test advanced rendezvous and proximity operations systems, cryogen and Xenon transfer, and other 

missions such as Raven will test integrated multisensory autonomous rendezvous and docking systems  and advanced 

computing. Concept missions such as Restore and the Asteroid Redirect Mission (which leverages investment in 

satellite-servicing technology) have engineering-level test programs that are planning to start this year.   

  

Assuming these technology advancements continue, ATLAST will have access to a mature and flight -proven suite of 

servicing technologies that will provide the Program with flexibility to help manage their development and position the 

observatory for a long and productive science campaign. 

 

10. SUMMARY 

Significant progress has been made on demonstrating that a 9.2m ATLAST can be launched in an existing rocket and 

with sufficient stability.  More development work is needed to further validate the requirements and design.  Technology 

development is needed particularly in the area of starlight suppression, mirrors, and mechanical isolation.  Modeling is 

underway to probe dynamic and thermal stability analytically so that the architecture can be refined and the volume and 

mass better quantified. No showstoppers have been found and there is hope that a slightly larger aperture (eg, 11.2m) 

may fit.  The architecture as presented is scalable up to larger sizes and the critical enabling technologies continue to 

progress to make this a feasible approach.   
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